

Journal of Innovation, Technology and Sustainability
2025, Vol. 3, Issue 1, 1-15

Modernising legacy enterprise resource planning systems using the microservices
architecture: A review

Antony Irungu Njina1

Samson Wanjala Munialo1

1School of Computing and Informatics, Meru University of Science and Technology

Abstract

Enterprise Resource Planning (ERP) systems are centralised data management software,
tools, and technologies that enhance collaboration and communication between
departments while reducing duplication, errors, and inconsistencies, leading to better
accuracy and productivity. However, over time, legacy ERP systems have become
cumbersome and dif�icult to maintain and adapt to new technologies. This paper presents
a review of microservices architecture (MSA) as a strategy for modernizing legacy ERP
systems. It synthesises literature to highlight the core principles, design patterns, challenges,
and best practices associated with MSA. The analysis reveals that MSA signi�icantly
enhances scalability, �lexibility, and maintainability by decomposing monolithic ERP
systems into modular, independent services. Key �indings include the bene�its of service
autonomy, decentralised data management, and API-driven communication in overcoming
the limitations of traditional ERP architectures. The paper concludes by highlighting the
advantages of MSA in ERP modernisation.

Keywords: Microservices architecture, enterprise resource planning, scalability,
modularity, deployment, design patterns, application programming interface

2 | Vol. 3, Issue 1, 1-15

1. Introduction

The monolithic design of enterprise systems yields a single, uni�ied software platform in
which all business processes and functions are tightly integrated within one cohesive
application. All modules share the same codebase and database, which means that any
change made to one part of the system can potentially affect the entire platform. In the
past, this design was initially attractive, as it provided an all-in-one solution for
businesses. However, over time, the rigid nature of these systems has increasingly
become a liability given the rapid evolution of technology and business environments.
Knoche and Hasselbring (2018) and Hasan et al. (2023) observe that many legacy
applications, often built as monolithic architectures, face significant challenges in terms
of scalability, flexibility, and maintainability. Modi�ications or updates to one module
often require extensive rework or testing across the entire system, leading to long
deployment cycles and operational disruptions. Integration of new features, like cloud-
based services or third-party tools, can also be particularly dif�icult due to the tightly
coupled nature of the components, which hampers the system’s ability to evolve
alongside emerging technologies (Oyeniran et al., 2024).

As the system grows and new business needs emerge, users often �ind it dif�icult to
modify or extend the system without affecting other parts of the platform.
Customisations, which are a common requirement for adapting ERP systems to speci�ic
industry or organisational needs, often lead to further entanglement in the system’s
architecture, making future upgrades or maintenance even more dif�icult. These
customisations can also create versioning con�licts, as updates to the core system might
overwrite or break user-speci�ic modi�ications. This design affects the scalability of the
systems, since expanding or modifying the system to accommodate increased data or
more users generally requires scaling the entire platform, which can be resource-
intensive and inef�icient.

According to Knoche and Hasselbring (2018) Microservices offer a modular and scalable
approach that can address the limitations inherent in monolithic ERP systems. They allow
for incremental refactoring of legacy systems, enabling organisations to modernize their
IT infrastructure without completely overhauling existing systems. Microservice
Architecture (MSA) involves breaking down a large application into smaller, independent
services, each of which is focused on a speci�ic business function or process. Each service
communicates with other services through lightweight protocols, typically using an
Application Programming Interface (API) or messaging queues.

MSA decouples individual components of a large system, offering businesses the
�lexibility to update, scale, and maintain speci�ic services independently (based on
demand) without affecting the entire system (Razzaq & Ghayyur, 2023). For example, if
the accounting module of the ERP system faces increased usage during peak periods, only
the accounting service needs to be scaled. Similar views are shared by Aljawawdeh et al.

3 | Vol. 3, Issue 1, 1-15

(2023) regarding enhanced modularity, agility, scalability, and easier maintenance
offered by MSA.

Integration of legacy systems with other modern technologies, such as cloud platforms,
mobile applications, or big data analytics tools, can be a signi�icant challenge (Barua &
Kaiser, 2024). Microservices are designed to communicate through APIs and
standardised protocols, making them highly compatible with modern systems (Daniel et
al., 2023). Modern organisation systems are increasingly relying on external tools and
platforms such as collaboration and communication tools, data analytics and Business
Intelligence tools, and payment platforms, among others. The compatibility of MSA
becomes a critical advantage that allows systems to seamlessly interact with a wide
variety of applications and services.

Hasan et al. (2023) argue that microservices enable faster deployment cycles, simpler
debugging, and more efficient updates. The �lexibility of MSA ensures that an ERP system
can evolve alongside technological advancements and changing business needs. MSA
supports faster development cycles, since it is compatible with modern development
practices such as DevOps, continuous integration, and continuous delivery (CI/CD). This
enables businesses to deploy updates more frequently and con�idently (Knoche &
Hasselbring, 2018).

2. Methodology

This narrative review on MSA designs employed a systematic and structured approach to
identify, analyse and synthesize relevant literature from academic databases and case
studies. Studies included in this review were required to address Microservices
Architecture (MSA) designs, principles, patterns, challenges, and best practices for
modernising legacy ERP systems. Exclusion criteria �iltered out outdated, irrelevant, or
redundant studies. The literature search was conducted across multiple academic
databases, including IEEE Xplore, ACM Digital Library, and Google Scholar. A structured
search strategy was employed using keywords such as “microservices architecture,”
“design patterns,” “scalability,” “modularity,” and “deployment.” Boolean operators and
�ilters were applied to re�ine the search results. The selection process involved screening
titles and abstracts for relevance, followed by a full-text review of potentially eligible
studies. The PRISMA �low diagram was used to map out the number of records identi�ied,
included, and excluded, along with reasons for exclusions.

Data extraction was performed using a standardised form to capture key information
from each study, including study design, sample size, MSA principles, design patterns,
challenges, and best practices. Thematic analysis was used to categorize the extracted
data into themes such as design principles, design patterns, transition strategies, and best
practices. Findings were synthesised into a coherent narrative. The risk of bias in
included studies was assessed using the ROBIS tool, ensuring the reliability and validity

4 | Vol. 3, Issue 1, 1-15

of the �indings. Subgroup analyses were conducted to explore variations in �indings based
on study characteristics, such as year and geographic location.

3. Microservices for Modernising Legacy ERP Systems

Core Principles

Velepucha and Flores (2023) present a comprehensive survey on MSA, focussing on its
core principles, design patterns, and the challenges organisations face when migrating
from monolithic systems. They begin by outlining the foundational principles of
microservices, such as decentralisation, service autonomy, scalability, and the need for
services to communicate via lightweight protocols like RESTful APIs. According to
Hippchen et al. (2017), the principles guide developers in creating microservices that are
more modular, cohesive, and closely aligned with the business logic, which enhances
maintainability and scalability. Key concepts such as bounded contexts, aggregates, and
entities can guide the design of microservices that are not only functionally coherent but
also decoupled from other services, making them easier to develop, test, and deploy
independently.

Design Patterns

In the early 1980s, distributed systems used Remote Procedure Calls (RPC), which
allowed programmes to execute code on remote systems as if they were local. This was
followed by technologies such as DCE (1988) and CORBA (1991), which aimed to make
remote calls transparent to developers. In the late 1990s and early 2000s, Service
Oriented Architecture (SOA) emerged as a means of designing software using loosely
coupled services. SOA allowed different services to communicate over a network using
standardised protocols, but it often resulted in complex and heavy-weight
implementations.

The term “microservices” was popularized in the early 2010s. It represented a shift
towards building applications as a collection of small, autonomous services that could be
developed, deployed, and scaled independently. This approach was in�luenced by earlier
concepts such as Unix philosophy, which advocates for building simple, modular tools.
Earlier writings by Fowler (2003) and Hohpe and Woolf (2004), and experiences of
companies like Net�lix and Amazon helped shape the microservices landscape. Over the
years, several design patterns have emerged and continue to evolve, addressing new
challenges and leveraging advances in cloud computing and containerization.

Design patterns are strategies that are employed to solve common problems in the
development and maintenance of MSA, allowing ef�icient development and management
of independent services (Shaikh & Agaskar, 2022). They are like templates that can be
used to create microservices applications that are rooted in the need to address the
limitations of monolithic architecture. Although microservices offer significant scalability

5 | Vol. 3, Issue 1, 1-15

benefits, maintainability and �lexibility, effective design and careful implementation are
key to maximising the potential of cloud-native applications.

Hippchen et al. (2017) explore the application of Domain-Driven Design (DDD) in the
context of designing microservice-based applications. They argue that DDD provides a
structured approach to decompose complex systems into smaller, more manageable
services by aligning microservices with business domains. Velepucha & Flores (2023)
explore the various design patterns used in MSAs, including API gateway, service registry,
and circuit breaker patterns, which help manage complexity, enhance fault tolerance, and
facilitate service discovery in distributed systems. They also provide a detailed analysis
of the challenges and benefits of using DDD in microservice architecture. While DDD helps
reduce complexity by fostering a clear separation of concerns, it also presents challenges
in terms of integrating disparate services and managing interservice communication.
Hippchen et al. (2017) highlights the importance of defining clear service boundaries and
ensuring that each microservice has its own data store, which aligns with the DDD
principle of encapsulating business logic and data. They also underscore the role of
collaboration between domain experts and development teams in successfully
implementing DDD for microservices.

Söylemez et al. (2022) identi�ied the use of design patterns such as service discovery, API
gateways, and event-driven architectures as effective approaches for managing inter-
service communication and ensuring fault tolerance. For data management, they
recommend adopting strategies such as eventual consistency, database per service, and
Command Query Responsibility Segregation (CQRS) to handle the complexities of
distributed data. They advocate for a service mesh architecture and robust authentication
mechanisms to safeguard communication between services. However, they advise the
need for further research on how to integrate these solutions into comprehensive
frameworks and develop more effective tools for managing MSAs at scale.

Daniel et al. (2023) explore the design of adaptable, future-ready MSAs by analysing
various microservice patterns that enhance system flexibility and long-term
sustainability. They identify several microservice patterns such as domain-driven design,
event sourcing, and API versioning that promote adaptability by decoupling services,
ensuring that individual components can evolve without disrupting the entire system.
The study stresses the importance of designing microservices with forward
compatibility, allowing the system to integrate new features or third-party technologies
with minimal disruption.

Ataei and Staegemann (2023) explore the application of microservices architectural
patterns to big data systems, focusing on how microservices can address the unique
challenges of scalability, flexibility, and manageability in large-scale data processing
environments. The authors review several core microservices patterns, such as service
decomposition, data management, and inter-service communication, and evaluate how
these patterns can be applied to big data architectures. They highlight the synergy

6 | Vol. 3, Issue 1, 1-15

between microservices and big data systems, particularly in enabling modularity and
allowing data systems to scale more effectively. The paper emphasises that by adopting
microservices, organisations can improve the responsiveness and fault tolerance of their
big data systems, reduce complexity, and facilitate easier maintenance and updates. The
authors also discuss the role of containerisation and cloud technologies in supporting the
deployment and management of microservices within big data infrastructures.

Oyeniran et al. (2024) explore MSA in the development of cloud-native applications,
focusing on design patterns and scalability. The authors explain how these applications,
which are designed to run in dynamic cloud environments, benefit from MSA by offering
scalability, flexibility, and improved fault tolerance. They discuss key design patterns in
microservices, such as service discovery, API gateway, Circuit Breaker, and Strangler Fig
patterns, which help manage the complexity of distributed systems. These patterns
enable efficient service decomposition, dynamic load balancing, and fault isolation, which
are critical for handling large-scale applications in the cloud. The authors also stress the
importance of containerisation technologies, like Docker, orchestration tools, such as
Kubernetes, and integration with cloud platforms like AWS, Azure, and GCP to facilitate
the deployment, scaling, and management of microservices in cloud environments.

Esparza-Peidro et al. (2024) explore the methodologies and approaches for effectively
modelling microservice architectures, with a focus on creating scalable, maintainable,
and well-structured systems. They discuss the importance of modelling as a critical step
in the design phase of microservice-based systems, where decisions about service
boundaries, inter-service communication, and data management must be carefully
considered. They present various modelling techniques, including DDD and service-
oriented modelling, that help to decompose complex applications into smaller,
manageable microservices. Their paper emphasises that a well-defined model facilitates
easier communication between development teams, a clearer understanding of system
behaviour, and a more efficient implementation of microservice patterns. The authors
also highlight the role of visualisation tools in supporting the modeling process, allowing
for a clearer representation of the system architecture and dependencies.

Barua and Kaiser (2024) discuss the technical aspects of a cloud-enabled MSA focussing
on key components such as service orchestration, API management, and data consistency
across distributed services. They emphasise the use of containerization technologies,
such as Docker, and orchestration platforms, such as Kubernetes, to automate service
deployment and management. The research also addresses critical challenges, such as
maintaining data consistency across distributed services and ensuring seamless
communication between microservices in a cloud environment. Through the application
of modern DevOps practices and continuous integration/continuous deployment (CI/CD)
pipelines, the authors argue that the proposed architecture not only enhances the
efficiency of the reservation system but also allows for greater flexibility in terms of
system upgrades and feature expansion.

7 | Vol. 3, Issue 1, 1-15

Use Cases

Minakova et al. (2022) presented a design for a location-based microservice architecture
aimed at enhancing the management and coordination of university activities. The
proposed system organises various university functions, such as event management,
room bookings, and campus navigation, based on real-time location data from students
and visitors. The system decomposed the university's complex services into independent,
location-aware microservices, to allow for greater flexibility, scalability, and
maintainability. The paper emphasises how this microservice approach allows for better
coordination between different departments and services, allowing students and faculty
to easily access information related to on-campus activities, such as lectures, meetings,
and university events. The use of location-based services ensures that the system can
provide personalised, context-aware information to users, such as directions to specific
locations or real-time updates on room availability. Their microservice architecture is
divided into four separate components, each handling different aspects of the navigation
process, and is integrated with the university's information system to manage schedules,
event venues, and equipment availability. The authors also discuss the technical aspects
of microservice architecture, including service decomposition, communication protocols,
and integration with existing university systems.

Oyeniran et al. (2024) discuss the scalability aspects of microservices in cloud-native
applications. They argue that due to their independent and loosely coupled nature,
microservices are inherently more scalable than monolithic applications. Cloud-native
MSAs enable services to scale horizontally, rendering them efficient in handling varying
workloads and traffic spikes. They address challenges in managing data consistency
across distributed services and ensuring seamless communication between
microservices by using event-driven architectures and eventual consistency models.

In MSA, service visibility is crucial for the effective management, monitoring, and scaling
of distributed systems. Tokmak et al. (2024) argue that as MSAs grow in complexity, with
many loosely coupled services, it becomes increasingly difficult to ensure that services
are discoverable, trackable, and observable. They address the challenge of discovering
and routing traffic using service discovery tools to dynamically locate the IP address and
port number of microservices, ensuring efficient routing and load balancing. The authors
highlight the role of service mesh technologies, API gateways, and centralised logging
systems in providing visibility into inter-service communication, performance metrics,
and system health.

Tokmak et al. (2024) also propose several strategies to improve service visibility,
including the adoption of observability frameworks and real-time monitoring tools that
aggregate data from multiple microservices. They emphasise the importance of
integrating distributed tracing systems such as Open Telemetry, which allows for end-to-
end tracking of requests as they pass through various services, providing insights into
service interactions and latency issues. They discuss how this visibility can also be

8 | Vol. 3, Issue 1, 1-15

extended to security by identifying potential vulnerabilities through continuous
monitoring. The study recommends a combination of architectural patterns and tools to
ensure that all microservices within an architecture are properly monitored and visible,
enabling better system maintenance, troubleshooting, and scaling.

Although microservices offer significant potential for improving IoT system
architectures, there is a growing need to focus more on design, integration, and security.
Siddiqui et al. (2023) review the use of microservices-based architectures for the Internet
of Things (IoT) systems. Their study examines the strengths, weaknesses, and
opportunities of using microservices to address the functional and non-functional
challenges associated with large-scale IoT connectivity. They also highlight how
microservices can enhance fault tolerance and improve the overall reliability of IoT
systems, as failures in one service do not necessarily impact the entire system. The review
includes a taxonomy for microservices-based IoT systems that offers a detailed picture of
the current landscape. It also discussed the integration of microservices with edge
computing and cloud platforms, which are often crucial for processing and analysing data
generated by IoT devices. The study identified key issues such as service orchestration,
efficient communication between microservices, and ensuring data consistency. The
study highlights the need for robust security mechanisms to protect against potential
vulnerabilities in microservices-based IoT systems, especially in distributed
environments.

Barua and Kaiser (2024) propose a cloud-enabled MSA designed specifically for next-
generation online airline reservation systems. They observe that traditional monolithic
architectures for airline reservation systems can be divided into smaller, independent
services, each focussing on a specific business function such as flight booking, customer
management, or payment processing. The study outlines how these services can be
hosted in the cloud, leveraging elastic scalability to efficiently handle fluctuating
workloads, and ensuring that the system can adapt to peak and off-peak demands. Their
work suggests that cloud-enabled microservices can provide the foundation for more
agile, scalable, and resilient systems. The benefits of such cloud-native microservices
include improved fault tolerance, reduced downtime, and the ability to rapidly deploy
new features and updates.

Challenges of Microservices Architecture

Although microservices offer significant benefits in terms of system effectiveness and
scalability, careful attention to security is crucial to mitigate the risks associated with
their decentralised and interconnected nature. Söylemez et al. (2022) categorise the
challenges associated with MSA into several key areas, including service decomposition,
inter-service communication, data management, and system security. They note that the
primary challenge lies in properly decomposing monolithic applications into
microservices while ensuring that the resulting services are cohesive, loosely coupled,
and manageable. The complexity of managing communication between numerous

9 | Vol. 3, Issue 1, 1-15

microservices, particularly in terms of latency and consistency, is the next signi�icant
hurdle. In addition, there are dif�iculties related to maintaining data consistency and
integrity across distributed services, as well as the security concerns that arise from the
decentralised nature of microservices-based systems. While working with location-based
services, Minakova et al. (2022) also noted that ensuring data consistency across
distributed services, managing service dependencies, and dealing with potential latency
issues are the key challenges.

Razzaq and Ghayyur (2023) also identi�ied the key challenges associated with adoption
of microservices, and how these challenges are compounded by the cultural and
organisational shifts required for successful adoption, such as the need for a DevOps
mindset and a shift towards agile methodologies. They noted that there is a lack of
comprehensive frameworks for guiding organisations through the migration process.

Velepucha and Flores (2023) highlight the significant challenges organisations face
during the migration to microservices. One of the primary challenges is decomposing
legacy monolithic systems into manageable independent services without disrupting
ongoing operations. Other challenges are the difficulties related to data management,
consistency, and inter-service communication, which can become more complex as the
number of microservices increases. In addition, organizational and cultural changes are
required to implement microservices, such as fostering collaboration between cross-
functional teams and adopting new DevOps practices. To overcome the challenges, the
study recommends adopting a gradual, iterative migration approach, using
containerisation for deployment, and leveraging cloud-native technologies.

Ataei and Staegemann (2023) examine the potential risks and challenges of integrating
microservice patterns with big data systems, such as issues with data consistency,
latency, and the complexity of managing distributed services. They provide a detailed
analysis of several case studies where organisations have successfully implemented
microservices in big data contexts, offering valuable insights into the best practices for
overcoming these challenges. The study suggests that microservices can enable more
efficient handling of large volumes of data by decentralising processing tasks and
allowing for independent scaling of services. However, they caution that the adoption of
microservices in big data systems requires careful consideration of service orchestration,
data synchronisation, and inter-service communication mechanisms to avoid pitfalls like
data fragmentation and performance bottlenecks.

Matias et al. (2024) explore the effectiveness and security of MSAs, focussing on the
trade-offs between scalability, agility, and security concerns. The study highlights how
the adoption of microservices has transformed the architecture of extensive systems, that
focus on prioritising distinct responsibilities and enabling the division into smaller, more
manageable components. However, this transition also introduces new security
vulnerabilities due to the increased presence of multiple smaller elements on the
Internet. The authors examine the security challenges inherent in MSAs, particularly

10 | Vol. 3, Issue 1, 1-15

regarding service isolation, authentication, and authorisation. They also identify several
key security risks, such as increased attack surface due to multiple services
communicating over networks and the difficulty in managing consistent security policies
across distributed services. To address these issues, they recommend a set of security
best practices, including service mesh architectures, API Gateway pattern, and strong
encryption techniques for data in transit. They also explore the use of Hyper Text
Transfer Protocol Secure (HTTPS) and diverse data payloads to mitigate security
vulnerabilities.

Esparza-Peidro et al. (2024) address the challenges of modelling microservices,
particularly when it comes to maintaining consistency and managing dependencies in a
distributed system. They identify key aspects such as service coordination, transaction
management, and API design as critical components to consider during the modelling
process. The authors suggest the use of architectural decision records (ADRs) to
document and justify design choices, which can help maintain consistency across a
microservice ecosystem over time.

Transition Strategies and Best Practices

The use of microservices is a strategy that has been identified for modernizing legacy
software systems. According to Razzaq and Ghayyur (2023) many organisations struggle
with the complexity of adopting them, particularly in terms of system decomposition,
service management, and ensuring ef�icient inter-service communication. Knoche and
Hasselbring (2018) provide detailed overview techniques such as service decomposition,
data partitioning, and the adoption of cloud-native infrastructure. They also highlight
several key challenges associated with using microservices for modernising legacy
software, including managing inter-service communication, ensuring data consistency
across distributed services, and maintaining backward compatibility with legacy
systems. The authors present a set of guidelines and best practices to mitigate these
challenges, such as adopting a gradual migration strategy, leveraging API gateways, and
using event-driven architectures to manage service interactions. They also caution that,
in the absence of careful planning, the transition to microservices can lead to disruptions
in business operations. Although this endeavour is complex and resource intensive, it
provides significant long-term benefits in terms of system agility, scalability, and
maintainability, making it a viable strategy for legacy software modernisation in a rapidly
evolving technology landscape.

Wolfart et al. (2021) present a detailed roadmap for modernising legacy systems by
transitioning to MSAs. The proposed roadmap is structured into the initial, planning,
execution, and monitoring phases that comprise eight activities. It begins with an
assessment of the architecture of the legacy system, business requirements, and technical
constraints. This creates an understanding of the limitations of the existing system and
identifies areas where microservices can provide the most value, such as improving
modularity and enabling independent scaling. The study also stresses the role of

11 | Vol. 3, Issue 1, 1-15

stakeholders, including IT teams and business leaders, in ensuring that the migration
plan aligns with organisational goals and capabilities. Findings from Hayretci and
Aydemir (2021) reveal that successful migration of legacy banking systems requires not
only technological expertise, but also effective change management practices to mitigate
risks and ensure smooth transitions. Some of the best practices identified in this study
include the phased migration approach, the use of hybrid systems during transition
periods, and the importance of maintaining high system availability.

Wolfart et al. (2021) explore the technical and operational challenges of migrating to
microservice-based architecture. They address key issues such as service decomposition,
data management, and inter-service communication. They discuss transition strategies
to ensure that legacy systems can continue to operate during the transition. The authors
also examine the importance of adopting modern tools and practices, such as
containerisation and continuous integration. The study advocates for a phased migration
strategy, which allows for gradual implementation, minimises disruption to business
operations, and provides time for the organisation to adapt to new technologies and
methodologies. Similar suggestions are shared by Tuusjärvi (2021) in a systematic
mapping of research literature on the migration of legacy software systems to MSA.

Hayretci and Aydemir (2021) present a multicase study on the strategies involved in
migrating legacy systems in the banking industry to modern IT infrastructures. The study
focusses on several banking institutions that have undergone the complex process of
migrating their legacy systems, which are often monolithic and rigid, into more flexible
and scalable architectures. The authors identify key challenges in the migration process,
such as data integration, system downtime, and resistance to change from employees
accustomed to legacy systems. They also discuss the technical difficulties in aligning
legacy applications with new technologies such as cloud computing, microservices, and
agile development methodologies. The study illustrates the various approaches banks
have taken to address these challenges, highlighting the importance of a well-planned
migration strategy that includes a thorough risk assessment and stakeholder
participation. The study also discusses the financial and operational benefits of migration
of legacy systems, such as improved efficiency, enhanced customer service capabilities,
and the ability to take advantage of new digital technologies for innovation.

Zhou et al. (2023) present an industrial investigation of the real-world practices and
challenges of implementing microservice architecture in large-scale organisations. The
authors examine how companies have adopted microservices and the various benefits
they have realised, including improved scalability, flexibility, and the ability to quickly
adapt to business requirements. The study identifies several successful practices, such as
the use of continuous integration/continuous delivery (CI/CD) pipelines, the
implementation of service mesh technologies, and the adoption of DevOps
methodologies, which have helped streamline development and deployment. However,
the authors also highlight the complexities involved such as service decomposition, inter-
service communication, and the management of distributed data. In addition, industry

12 | Vol. 3, Issue 1, 1-15

professionals cite issues related to monitoring, debugging, and maintaining
microservices in production. The authors emphasise that these challenges are often
exacerbated by a lack of mature tooling and insufficient experience with microservices
within development teams. Based on their findings, Zhou et al. (2023) suggest that
organisations should approach microservices adoption incrementally, focussing on
building the necessary skills, infrastructure, and operational processes to support the
architecture.

Daniel et al. (2023) provide a detailed evaluation of best practices for addressing
challenges, such as the use of event-driven architectures to handle asynchronous
communication and maintain data integrity. They emphasise the role of continuous
integration and continuous deployment (CI/CD) pipelines in enabling seamless updates
and reducing the risks associated with system changes.

Abgaz et al. (2023) discuss the various strategies and frameworks that organisations use
to facilitate the decomposition process, such as domain-driven design and event-driven
architecture. They identify critical success factors, including effective change
management, the role of automated testing and continuous integration, and the
importance of team collaboration in the adoption of microservices. Furthermore, the
authors explore the impact of this architectural shift on software development practices
and organisational structure, noting that microservices demand a cultural shift towards
DevOps and agile methodologies.

The effective transition from monolithic to microservice architecture demands better
tools, frameworks, and training. Razzaq and Ghayyur (2023) evaluated the transition
from monolithic to microservice architectures, focussing on awareness of the shift and
the challenges faced by organisations during this transition. Esparza-Peidro et al. (2024)
discusses the importance of scalability and fault tolerance in the design of microservice
models, stressing the need for flexibility in the face of changing business needs. The study
proposes modularization, clear separation of concerns, and proactive consideration of
system performance and reliability as some of the best practices for microservice
modelling.

4. Conclusion

Microservices offer a solution by decoupling monolithic systems into smaller and more
manageable components that can evolve independently. The need to modularize legacy
systems using MSA is driven by the demands for scalability, �lexibility, and integration in
modern business environments. The advantages of MSA include enhanced scalability,
faster time to market, easier maintenance, and improved integration, which makes them
as a viable alternative to in�lexible legacy systems. However, the transition to
microservices introduces challenges, particularly in terms of data management,
complexity, and skill requirements. Despite these challenges, the bene�its of
modularization through microservices make it a compelling strategy for businesses

13 | Vol. 3, Issue 1, 1-15

seeking to modernise their existing systems. The choice of MSA design and transition
strategy is dictated by the speci�ic needs of an organisation after careful planning and
consideration. Although MSA presents an approach to modernizing legacy systems,
future work should focus on empirical studies comparing the performance, scalability,
and maintenance costs of legacy monolithic systems versus modularised microservices
architectures to provide valuable insights into the practical bene�its of MSA adoption.

References

Abgaz, Y., McCarren, A., Elger, P., Solan, D., Lapuz, N., Bivol, M., Jackson, G., Yilmaz, M.,
Buckley, J., & Clarke, P. (2023). Decomposition of monolith applications into
microservices architectures: A systematic review. IEEE Transactions on Software
Engineering, 49(8), 4213–4242.

Ahmed Shaikh, K., & Agaskar, S. S. (2022). Microservices Design Patterns. In Azure
Kubernetes Services with Microservices : Understanding Its Patterns and Architecture
(pp. 61–101). Apress. https://doi.org/10.1007/978-1-4842-7809-3_3

Aljawawdeh, H., Sabri, M., & Maghrabi, L. (2023). Toward Serverless and Microservices
Architecture: Literature, Methods, and Best Practices. In Arti�icial Intelligence,
Internet of Things, and Society 5.0 (pp. 573–584). Springer.

Ataei, P., & Staegemann, D. (2023). Application of microservices patterns to big data
systems. Journal of Big Data, 10(1), 56.

Barua, B., & Kaiser, M. S. (2024). Cloud-Enabled Microservices Architecture for Next-
Generation Online Airlines Reservation Systems.

Daniel, J., Wang, X., & Guerra, E. (2023). How to design Future-Ready Microservices?
Analyzing microservice patterns for Adaptability. Proceedings of the 28th European
Conference on Pattern Languages of Programs, 1–7.

Esparza-Peidro, J., Muñoz-Esco\’\i, F. D., & Bernabéu-Aubán, J. M. (2024). Modeling
microservice architectures. Journal of Systems and Software, 213, 112041.

Fowler, M. (2003). Patterns of enterprise application architecture. Addison-Wesley.

Hasan, M. H., Osman, M. H., Novia, I. A., & Muhammad, M. S. (2023). From Monolith to
Microservice: Measuring Architecture Maintainability. International Journal of
Advanced Computer Science and Applications, 14(5).

Hayretci, H. E., & Aydemir, F. B. (2021). A Multi Case Study on Legacy System Migration
in the Banking Industry. In S. and T. E. La Rosa Marcello and Sadiq (Ed.), Advanced
Information Systems Engineering (pp. 536–550). Springer International Publishing.

14 | Vol. 3, Issue 1, 1-15

Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., & Abeck, S. (2017). Designing
microservice-based applications by using a domain-driven design approach.
International Journal on Advances in Software, 10(3 & 4), 432–445.

Hohpe, G., & Woolf, B. (2004). Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional.

Knoche, H., & Hasselbring, W. (2018). Using microservices for legacy software
modernization. IEEE Software, 35(3), 44–49.

Matias, M., Ferreira, E., Mateus-Coelho, N., Ribeiro, O., & Ferreira, L. (2024). Evaluating
Effectiveness and Security in Microservices Architecture. Procedia Computer Science,
237, 626–636.

Minakova, O. V., Akamsina, N. V., & Deniskina, A. (2022). Designing Location-Based
Microservice for University Activities. In G. L. and V. T. Solovev Denis B. and
Kyriakopoulos (Ed.), SMART Automatics and Energy (pp. 651–660). Springer Nature
Singapore.

Oyeniran, C. O., Adewusi, A. O., Adeleke, A. G., Akwawa, L. A., & Azubuko, C. F. (2024).
Microservices architecture in cloud-native applications: Design patterns and
scalability. Computer Science & IT Research Journal, 5(9), 2107–2124.

Razzaq, A., & Ghayyur, S. A. K. (2023). A systematic mapping study: The new age of
software architecture from monolithic to microservice architecture—awareness
and challenges. Computer Applications in Engineering Education, 31(2), 421–451.

Siddiqui, H., Khendek, F., & Toeroe, M. (2023). Microservices based architectures for IoT
systems-State-of-the-art review. Internet of Things, 100854.

Söylemez, M., Tekinerdogan, B., & Kolukısa Tarhan, A. (2022). Challenges and Solution
Directions of Microservice Architectures: A Systematic Literature Review. Applied
Sciences, 12(11). https://doi.org/10.3390/app12115507

Tokmak, A. V., Akbulut, A., & Catal, C. (2024). Boosting the visibility of services in
microservice architecture. Cluster Computing, 27(3), 3099–3111.

Tuusjärvi, K. (2021). Modernization of legacy systems and migrations to microservice
architecture.

Velepucha, V., & Flores, P. (2023). A survey on microservices architecture: Principles,
patterns and migration challenges. IEEE Access.

Wolfart, D., Assunção, W. K. G., da Silva, I. F., Domingos, D. C. P., Schmeing, E., Villaca, G. L.
D., & Paza, D. do N. (2021). Modernizing Legacy Systems with Microservices: A
Roadmap. Proceedings of the 25th International Conference on Evaluation and

15 | Vol. 3, Issue 1, 1-15

Assessment in Software Engineering, 149–159.
https://doi.org/10.1145/3463274.3463334

Zhou, X., Li, S., Cao, L., Zhang, H., Jia, Z., Zhong, C., Shan, Z., & Babar, M. A. (2023). Revisiting
the practices and pains of microservice architecture in reality: An industrial inquiry.
Journal of Systems and Software, 195, 111521.

	Abstract
	Abstract
	2. Methodology
	2. Methodology
	Core Principles
	Core Principles
	Design Patterns
	Design Patterns
	Use Cases
	Use Cases
	Use Cases
	Challenges of Microservices Architecture
	Challenges of Microservices Architecture
	Transition Strategies and Best Practices
	Transition Strategies and Best Practices

	References
	References

