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Abstract 

As the global demand for energy rises, power system networks are teetering on the verge of 
collapsing owing to a compromise in system stability. During system disturbances, the 
network's inability to supply adequate reactive power causes instability and eventual collapse. 
As such, optimized generation scheduling during system disturbances can improve the 
utilization of the power plants while lowering power loss, improving voltage regulation, 
reducing branch loading, and ensuring the secure operation of system equipment. Since power 
systems have conflicting and multiple objectives, this study proposes a multiobjective optimal 
power flow incorporating three objective functions: generation cost, power loss, and the 
maximum value of the line Voltage Collapse Proximity Index. The Multiobjective Particle Swarm 
Optimization Algorithm is used to minimize these objectives on the IEEE 30-bus system for 
different case studies in normal, contingency, and stressed system conditions. Fuzzy Decision 
Theory is utilized for obtaining the best compromise solutions amongst a set of Pareto optimal 
solutions. The results show that the voltage stability of the system is improved by an average of 
63.09% during system disturbances with multiobjective optimization. Simultaneous 
optimization of the three objective functions provides the most voltage stable condition for all 
system conditions, preventing possible collapse. 

Keywords: Fuzzy decision making, IEEE 30-bus; MOPSO; Voltage Collapse; Voltage Collapse 
Proximity Index 
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1 Introduction 

It has become paramount that utilities prioritize the security and stability of power system 
networks due to the severity and impact of blackouts. Recently, due to the rapid growth of 
demand in distribution networks, the threat of voltage stability and subsequent outages in 
distribution networks have attracted more attention from researchers [1]–[6].  Voltage 
instability becomes a more serious issue as the system becomes more complicated and 
intensively loaded. The widespread blackouts of the last two decades are evidence of this. 
Some of the major blackouts in Greece (July 12, 2004), WSCC, USA (July 02, 1996), West 
Tennessee (Aug. 22, 1987), and Belgium were caused by voltage breakdown (Aug. 04, 1982). 
Other severe blackouts, such as the 2003 North American blackout [7], were also caused by 
voltage instability. The power system's inability to transfer reactive power to load is the 
primary source of instability [8]. This problem can be prevented if the static voltage stability 
margin is increased. Controlling system parameters by incorporating the voltage stability 
problem into the traditional optimal power flow (OPF) problem is one effective method [9]. 

Specifically, Voltage Stability Constrained Optimal Power Flow (VSC-OPF) can be achieved 
by formulating a multiobjective optimization problem. In the power system, minimizing 
simply one objective function using standard OPF is insufficient because many other issues, 
such as transmission losses, voltage deviation, and stability, have competing aims and must 
be addressed simultaneously [10]. As a result, in such scenarios, achieving appropriate 
operating points for power systems necessitates solving a multi-objective nonlinear 
optimization problem. 

The multiobjective VSC-OPF proposed in this study incorporates a Voltage Collapse 
Proximity Index (VCPI) alongside other objective functions of generation cost and 
transmission power loss. The studies are carried out under three different system 
conditions: normal, contingency, and stressed. The addition of an efficient Voltage Collapse 
Proximity Index in the multiobjective problem for varying system conditions is one of the 
research's significant achievements.  

2 Objective Functions 

In this study, three objective functions of the OPF, consisting of generation cost, transmission 
line losses, and maximum value of the line VCPI are considered as detailed below. 

2.1 Minimization of total fuel cost for active power generation 

The objective here is to minimize the total fuel generation cost. The function is formulated 
as follows; 
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𝑓𝑓1(𝑥𝑥,𝑢𝑢) = �(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑃𝑃𝑔𝑔𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑃𝑃𝑔𝑔𝑖𝑖
2)                                                 (1)

𝑛𝑛𝑔𝑔

𝑖𝑖=1

 

where 𝑓𝑓𝑐𝑐(𝑥𝑥) is the total fuel cost, 𝑛𝑛𝑔𝑔 is the number of generator buses; 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 are the 𝑖𝑖th 
generator cost coefficients; and 𝑃𝑃𝑔𝑔𝑖𝑖 is the real power injection of the 𝑖𝑖th generator. 

2.2 Minimization of loss 

The objective of this function is to minimize transmission loss in MW. It is given by; 

𝑓𝑓2(𝑥𝑥,𝑢𝑢)  =  � 𝐺𝐺𝑘𝑘(𝑉𝑉𝑖𝑖2 + 𝑉𝑉𝑗𝑗2 − 2𝑉𝑉𝑖𝑖𝑉𝑉𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗))                                    (2)
𝑁𝑁𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙

𝑘𝑘=1

  

where 𝐺𝐺𝑘𝑘 is the conductance of the kth line. 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 are the voltage magnitude at the two 
ends of line k. 𝜃𝜃𝑖𝑖  and 𝜃𝜃𝑗𝑗  are the bus voltage angles at the two ends of line k. 

2.3 Minimization of the maximum line VCPI 

The Voltage Collapse Proximity Index (VCPI) is incorporated into the conventional OPF 
problem highlighted in Equation (8). Voltage stability improvement based on VCPI is 
proposed as follows; 

𝑓𝑓3(𝑥𝑥,𝑢𝑢) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑖𝑖)                                                 (3)  

where VCPI is given by [11]: 

𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉(𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝) =
𝑃𝑃𝑟𝑟

𝑃𝑃𝑟𝑟(𝑚𝑚𝑎𝑎𝑥𝑥)                                                    (4) 

𝑃𝑃𝑟𝑟(𝑚𝑚𝑎𝑎𝑥𝑥) =
𝑉𝑉𝑠𝑠2

𝑍𝑍
 

𝑐𝑐𝑐𝑐𝑐𝑐∅
4𝑐𝑐𝑐𝑐𝑐𝑐2((𝛳𝛳 − ∅)/2)

                                        (5) 

where ∅ = 𝑡𝑡𝑎𝑎𝑛𝑛−1(𝑄𝑄𝑟𝑟/𝑃𝑃𝑟𝑟) 

With increased power flow across a transmission line, the value of VCPI steadily rises. 
Voltage breakdown happens when the VCPI value reaches 1. The VCPI value ranges from 0 
(no load) to 1 (maximum load - voltage collapse point). 

2.4 System Constraints 

In the OPF problem, there are two types of constraints to consider. Equations (6)– (12) 
describe the system constraints to be handled. 
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2.4.1 Equality Constraints 

These include active and reactive power balance equations [9]; 

𝑃𝑃𝑔𝑔𝑖𝑖 − 𝑃𝑃𝑑𝑑𝑖𝑖 = 𝑉𝑉𝑖𝑖�𝑉𝑉𝑗𝑗�𝐺𝐺𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝛳𝛳𝑖𝑖𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛𝛳𝛳𝑖𝑖𝑗𝑗�                   𝑖𝑖 = 1, . . . ,𝑁𝑁                      (6)
𝑁𝑁

𝑗𝑗=1

 

𝑄𝑄𝑔𝑔𝑖𝑖 − 𝑄𝑄𝑑𝑑𝑖𝑖 = 𝑉𝑉𝑖𝑖�𝑉𝑉𝑗𝑗�𝐺𝐺𝑖𝑖𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛𝛳𝛳𝑖𝑖𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝛳𝛳𝑖𝑖𝑗𝑗�                   𝑖𝑖 = 1, . . . ,𝑁𝑁                      (7)
𝑁𝑁

𝑗𝑗=1

 

where 𝑃𝑃𝑔𝑔𝑖𝑖and 𝑄𝑄𝑔𝑔𝑖𝑖 are the real and reactive power injections of the 𝑖𝑖th generator. 𝑃𝑃𝑑𝑑𝑖𝑖  and 𝑄𝑄𝑑𝑑𝑖𝑖  
are the real and reactive power loads at bus 𝑖𝑖. 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 are the voltage magnitude at buses 𝑖𝑖 
and 𝑗𝑗. 𝐺𝐺𝑖𝑖𝑗𝑗  and 𝐵𝐵𝑖𝑖𝑗𝑗 are the transfer conductance and susceptance between buses 𝑖𝑖 and 𝑗𝑗, 
respectively. 𝛳𝛳𝑖𝑖𝑗𝑗 is the phase angle difference between buses 𝑖𝑖 and 𝑗𝑗. N is the total number of 
system buses. 

2.4.2 Inequality Constraints 

The inequality constraints to be considered are as follows:  

Generator limits: 

𝑃𝑃𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑔𝑔𝑖𝑖 ≤ 𝑃𝑃𝑔𝑔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ,       𝑖𝑖 = 1, . . . ,𝑁𝑁𝑔𝑔                                                      (8) 

𝑄𝑄𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑄𝑄𝑔𝑔𝑖𝑖 ≤ 𝑄𝑄𝑔𝑔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,       𝑖𝑖 = 1, … ,𝑁𝑁𝑔𝑔                                                      (9) 

𝑉𝑉𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑉𝑉𝑔𝑔𝑖𝑖 ≤ 𝑉𝑉𝑔𝑔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ,       𝑖𝑖 = 1, . . . ,𝑁𝑁𝑔𝑔                                                     (10) 

Transmission line limits: 

�𝑆𝑆𝐿𝐿𝑖𝑖� ≤ 𝑆𝑆𝐿𝐿𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,                                                                      (11) 

Load bus voltage magnitude limits: 

𝑉𝑉𝑑𝑑𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑉𝑉𝑑𝑑𝑖𝑖 ≤ 𝑉𝑉𝑑𝑑𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ,       𝑖𝑖 = 1, . . . ,𝑁𝑁𝑑𝑑                                              (12) 

where 𝑃𝑃𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑃𝑃𝑔𝑔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum active power generations at bus 𝑖𝑖. 
𝑄𝑄𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑄𝑄𝑔𝑔𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum reactive power generations at bus 𝑖𝑖. 𝑉𝑉𝑔𝑔𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 

and 𝑉𝑉𝑔𝑔𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum generator voltages at bus 𝑖𝑖. 𝑆𝑆𝐿𝐿𝑖𝑖 and 𝑆𝑆𝐿𝐿𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 are the 
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apparent power and its maximum at branch 𝑖𝑖. 𝑉𝑉𝑑𝑑𝑖𝑖
𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑉𝑉𝑑𝑑𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and 
maximum load voltages at bus 𝑖𝑖.  

2.4.3 Constraint Handling 

In this study, quadratic constraints handling will be used to generate an augmented fitness 
function of the form; 

𝐽𝐽(𝑥𝑥,𝑢𝑢) =  𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝐾𝐾𝑃𝑃(𝑃𝑃𝑔𝑔𝑠𝑠𝑔𝑔𝑚𝑚𝑐𝑐𝑘𝑘 − 𝑃𝑃𝑠𝑠𝑔𝑔𝑚𝑚𝑐𝑐𝑘𝑘𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙)2 +  𝐾𝐾𝑉𝑉 � (𝑉𝑉𝑑𝑑𝑖𝑖−𝑉𝑉𝑑𝑑𝑖𝑖
𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙)2         

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖=1

       

+ 𝐾𝐾𝑄𝑄 � (𝑄𝑄𝑔𝑔𝑖𝑖−𝑄𝑄𝑔𝑔𝑖𝑖
𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙)2  + 𝐾𝐾𝑆𝑆 � (𝑆𝑆𝐿𝐿𝑖𝑖−𝑆𝑆𝐿𝐿𝑖𝑖

𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙)2                                                   (13)
𝑁𝑁𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙

𝑖𝑖=1

𝑁𝑁𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙

𝑖𝑖=1

 

where 𝐽𝐽(𝑥𝑥, 𝑢𝑢) is the penalized objective function; 𝐾𝐾𝑃𝑃, 𝐾𝐾𝑄𝑄, 𝐾𝐾𝑉𝑉, and 𝐾𝐾𝑠𝑠 are the penalty factors; 
and 𝑥𝑥𝑔𝑔𝑖𝑖𝑚𝑚 is the limit value of the dependent variables, determined as follows: 

𝑥𝑥𝑔𝑔𝑖𝑖𝑚𝑚 = �
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑖𝑖𝑓𝑓 𝑥𝑥 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥,                𝑖𝑖𝑓𝑓 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛, 𝑖𝑖𝑓𝑓 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
                                       (14) 

When the actual or active power is beyond the permitted range, the penalty function 
produces extremely high values; hence, the algorithm adjusts the active and reactive powers 
inside the allowable range to prevent a large penalty value. 

3 Computation Procedure 

3.1 Multiobjective Particle Swarm Optimization (MOPSO) Algorithm 

The MOPSO optimization method was used to solve the VSC-OPF in this research. By 
combining “Pareto-dominance principles” with PSO, it is utilized to address the issue of 
modifying weighting elements in PSO. [12], [13] explain the MOPSO method used in this 
study. 

3.2 Best Compromise Solution 

To efficiently choose a candidate Pareto-optimal solution among the many possible solutions 
on the Pareto front, fuzzy set theory has been commonly used. Due to the nature of the 
decision maker's irrationality, the 𝑖𝑖𝑡𝑡ℎ objective function of a solution in the Pareto-optimal 
set, 𝐹𝐹𝑖𝑖 , is represented by a membership function 𝜇𝜇𝑖𝑖 defined as [14]: 
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𝜇𝜇𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ 1,                         𝐹𝐹𝑖𝑖 ≤ 𝐹𝐹𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛,

𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑖𝑖
𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛

,       𝐹𝐹𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝐹𝐹𝑖𝑖 ≤

0,                          𝐹𝐹𝑖𝑖 ≥ 𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,                                    (15) 

where 𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 are maximum and minimum values of the 𝑖𝑖𝑡𝑡ℎ objective function, 
respectively. 

For each non-dominated solution k, the normalized membership function 𝜇𝜇𝑘𝑘 is calculated as: 

𝜇𝜇𝑘𝑘 =
∑ 𝜇𝜇𝑖𝑖𝑘𝑘
𝑁𝑁𝑙𝑙𝑜𝑜𝑜𝑜
𝑖𝑖=1

∑ ∑ 𝜇𝜇𝑖𝑖
𝑗𝑗𝑁𝑁𝑙𝑙𝑜𝑜𝑜𝑜

𝑖𝑖=1
𝑀𝑀
𝑗𝑗=1

                                                (16) 

The number of nondominated solutions is M. The best compromise solution is the one 
having the highest value of 𝜇𝜇𝑘𝑘. The decision-maker will have a priority list of nondominated 
solutions if all solutions are arranged in decreasing order according to their membership 
function. This will guide the decision-maker, given the current operating conditions.   

4 Results and Discussion 

The study investigates the performance of the system in three operating scenarios 
considering voltage stability in the conventional OPF problem. The goal is to increase static 
voltage stability while also satisfying other objectives like lowering generation costs and 
reducing losses. The efficacy of VSC-OPF on various case studies of the multiobjective 
problem was studied using the IEEE 30-bus system. Figure 1 summarizes all case studies 
considered in this study. 

 

Figure 1: Case studies considered in this study 
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The IEEE 30-bus is made up of 30 buses, 6 generators, 41 branches, and 4 transformers, as 
illustrated in Figure 2. Buses 1, 2, 5, 8, 11, and 13 have generators, whereas lines 6-9, 6-10, 
4-12, and 27-28 have transformers. The total connected load is 283.4MW and 126.2MVAR. 
The detailed data was taken from [15]. All analyses in this work were carried out using the 
MATPOWER toolbox in MATLAB. 

 

Figure 2: IEEE 30-bus system 

4.1 Multiobjective optimization 

4.1.1 Case 1 (Generation Cost vs Power Loss) 

In this scenario, two objective functions are considered: generation cost in dollars per hour 
and transmission loss in megawatts. Figure 3 shows the Pareto optimal solutions for all three 
system conditions: normal (SC-1), contingency (SC-2), and stressed (SC-3). The optimal 
solution is indicated as the Best Cost Solution (BCS).  
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Figure 3: Pareto optimal solutions for Case 1 

The BCS value for SC-1 for IEEE 30-bus was 841.95$/hr. for generation cost and 5.54MW for 
transmission loss. In this scenario, the VCPI(max) was 0.3113 and the VCPI(sum) was 
4.1512. The cost rises to 868.45$/hr. in contingency conditions (SC-2), while the loss and 
VCPI(max) rise to 8.86MW and 0.7545, respectively. The largest generating costs, losses, and 
voltage stability index are incurred when the network is stressed, at 1300.00$/hr., 15.60MW, 
and 1.11. Because 1.11 is over the voltage collapse point of 1, the system may experience 
voltage collapse under increased load conditions. Table 1 shows a comparison of Best 
Compromise Solutions to the best individual values. Individual (single objective) 
optimization, as expected, produces the best cost and loss values since only one parameter 
is optimized.  

Table 1: Summary results for individual best and BCS for Case 1 

Parameter SC-1 SC-2 SC-3 

Individual optimization 

Best Cost ($/hr.) 802.39 840.13 1285.10 

Best Loss (MW) 3.58 4.20 13.10 

Best Compromise Solution 

Cost ($/hr.) 841.95 868.45 1300.00 
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Parameter SC-1 SC-2 SC-3 

Loss (MW) 5.54 8.86 15.60 

Pgen (MW) 288.94 292.26 419.15 

Qgen (MVAR) 90.13 107.88 183.48 

VCPI (max) 0.3113 0.7545 1.1100 

VCPI (sum) 4.1512 5.1728 8.1998 
 

4.1.2 Case 2 (Generation Cost vs VCPImax) 

The objective functions in this case study are minimization of generation cost and 
VCPI(max). All scenarios considered for analysis are as shown in Figure 4. Table 2 indicates 
the best compromise solutions generated from the Pareto fronts for the IEEE 30-bus system. 

 

Figure 4: Pareto optimal solutions for Case 2 

The results indicate that when cost and VCPI(max) are used as objective functions, the total 
generation cost for SC-1 is 860.16 $/hr., compared to 841.95$/hr. when only cost and loss 
are used. The addition of VCPI(max) does not necessarily guarantee that the system's voltage 
stability improves. Furthermore, when compared to Case 1, there is no substantial difference 
in loss performance. With contingency and stressed operating conditions, the system's 
generation cost, loss, and voltage stability performance all drop, as expected. 
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Table 2: Summary results for individual best and BCS for Case 2 

Parameter SC-1 SC-2 SC-3 

Individual optimization 

Best Cost ($/hr.) 802.92 840.65 1288.30 

Best VCPImax 0.3058 0.4091 0.9000 

Best Compromise Solution 

Best Cost ($/hr.) 860.16 868.91 1309.10 

Best VCPImax 0.4450 0.7774 1.0200 

VCPI (sum) 4.7968 5.2159 8.6677 

Pgen (MW) 288.93 292.37 421.68 

Qgen (MVAR) 90.20 107.98 192.91 

Loss (MW) 5.53 8.97 17.88 
 

4.1.3 Case 3 (Generation Cost vs Power Loss vs VCPImax) 

Case 3 examines the system's performance while taking into account the generating cost, 
power loss, and VCPI(max) as the objective functions. Figure 5 shows the Pareto fronts for 
the three operational scenarios for IEEE 30-bus system. 

 

Figure 5: Pareto optimal solutions for Case 2 
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The network performance under normal operating settings indicates a generating cost of 
903.93 $/hr., a power loss of 4.42 MW, and a VCPI(max) of 0.3502. The results show an 
increase in generating cost while loss and VCPI(max) decrease in all operating situations SC-
1, SC-2, and CS-3.  

Table 3: Summary results for individual best and BCS for Case 3 

Parameter SC-1 SC-2 SC-3 

Individual optimization 

Best Cost ($/hr.) 802.96 840.09 1285.50 

Best Loss (MW) 3.51 4.31 13.10 

Best VCPImax 0.31 0.42 0.90 

Best Compromise Solution 

Best Cost ($/hr.) 903.93 923.73 1309.30 

Best Loss (MW) 4.42 5.50 14.90 

Best VCPImax 0.3502 0.5153 0.9840 

VCPI (sum) 4.4019 4.5358 8.0510 

Pgen (MW) 287.85 288.90 418.47 

Qgen (MVAR) 86.24 96.16 181.02 
 

4.2 Impact on Voltage Stability 

To evaluate the impact of the multiobjective optimization on the voltage stability of the 
network, five Case studies are assessed for comparison. Table 4 shows the different studies 
performed for all system conditions. 

Table 4: Case studies for performance comparison 

Case Study Description 

Base No optimization 

Case 0 Single objective optimization 

Case 1 Multiobjective optimization (Generation Cost, Power Loss) 

Case 2 Multiobjective optimization (Generation Cost, VCPI(max)) 

Case 3 Multiobjective optimization (Generation Cost, Power Loss VCPI(max)) 
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The voltage stability performance of the systems as seen in Figure 6 indicates that all 
operating conditions and contingency conditions, Case 3 offers the most voltage stable 
system condition with VCPI(max) below voltage collapse point. However, in normal 
operating conditions, Case 1 provides the minimal VCPI(max) value of 0.31 hence the best 
stability condition. 

 

Figure 6: Voltage stability performance by VCPI(max) 

5 Conclusion 

A voltage security-constrained multiobjective optimal power flow is presented in this 
research. To analyze network performance in normal, contingency, and stressed settings, the 
suggested approach used three objective functions: the Voltage Collapse Proximity Index, 
generation costs, and power losses. Lower index values suggest a greater improvement in 
voltage stability. 

When multiobjective optimization is used, the results reveal that average voltage stability 
improvements of 62.90%, 70.14%, and 56.25% are achieved in normal, contingency, and 
stressed system conditions, respectively. This improvement generally comes at the expense 
of generation cost. As a result, a compromise is essential. Thus, a selection index can be 
incorporated into these studies to advise on the ideal system parameters to ensure 
optimized performance of generation cost, loss, and voltage stability, allowing for better 
decision-making. 
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